Do \(x^2\ge0;\forall x\)
Diện tích:
\(S=\int\limits^3_{-1}x^2dx=\frac{28}{3}\)
Do \(x^2\ge0;\forall x\)
Diện tích:
\(S=\int\limits^3_{-1}x^2dx=\frac{28}{3}\)
cho hình phẳng h được giới hạn bởi đồ thị hàm số y = e mũ 2x trục Ox Oy và đường thẳng x = 2 tính s hình phẳng trên
Câu 1: Diện tích hình phẳng giới hạn bởi hai đường thẳng x=0,x=\(\pi\) đồ thị hàm
số y =cosx và trục Ox là
Câu 2: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y=xe\(^x\) , trục hoành và
hai đường thẳng x=-2,x=3có công thức tính là
Câu 3: Cho hình (H) là hình phẳng giới hạn bởi parabol y =x\(^2\) -4x+4, đường
cong y =\(x^3\) và trục hoành (phần tô đậm trong hình vẽ). Tính diện tích S của hình
(H )
Câu 4: Diện tích hình phẳng giới hạn bởi 2 đồ thị f(x)=\(x^3-3x+2\), g(x)=x+2 là
a. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x ( 1+5x2) 3, đường thẳng x=1 và trục hoành.
b. Tính diện tích hình phẳng giới hạn bởi hàm số ý = cos2x, đường thẳng x=π\4 trục tung và trục hoành.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=\(\frac{1}{x\left(x^3+1\right)}\) x=1 ,x=2 và trục Ox
Diện tích hình phẳng giới hạn bởi đường thẳng y=x+3 , đường cong y=x^2+1 là
Cho mặt phẳng (H) giới hạn bởi đồ thị hàm số y=x mũ 3 -x, trục hoành và hai đường thẳng x=0,x=1.Thể tích khối tròn xoay tạo thànhkhi quay hình (H) quanh trục ox bằng
Pham Trong Bach 12 tháng 7 2019 lúc 7:18 Tìm thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = 2-x và y = -x xung quanh trục Ox.
Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y=x mũ 2, trục hoành. Thể tích khối tròn xoay tạo thành khi quay hình (H) quanh trục ox bằng