Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}++\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
cho a,b,c dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).
CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\sqrt{2011}}{2}\)
cho a,b,c >0
chứng minh rằng
\(\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{a^2+c^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\ge\dfrac{a+b+c}{\sqrt{2}}\)
Cho a,b,c>0 tm a+b+c=5. \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).
C/m\(\dfrac{\sqrt{a}}{2+a}+\dfrac{\sqrt{b}}{2+b}+\dfrac{\sqrt{c}}{2+c}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
cho a,b,c dương thỏa mãn \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho \(M=\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\). Rút gọn M
Cho \(M=\dfrac{a}{\sqrt{a^2-b^2}}-\left(1+\dfrac{a}{\sqrt{a^2-b^2}}\right):\dfrac{b}{a-\sqrt{a^2-b^2}}\). Tìm ĐKXĐ của M
Cho a,b,c >0 t/m \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).
TÌm min \(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Cho 3 số dương a, b, c thoả mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)