Cho a b c>0 tm a+b+c=3
Chứng minh \(\dfrac{a^2}{2a+1}+\dfrac{b^2}{2b+1}+\dfrac{c^2}{2c+1}\le\dfrac{a^2+b^2+c^2}{\sqrt{a^2+b^2+c^2+6}}\)
Cho a,b,c>0 t/m \(a^2+b^2+c^2=3\). Tìm max
P\(P=\dfrac{a}{a^2+2b+3}+\dfrac{b}{b^2+2c+3}+\dfrac{c}{c^2+2a+3_{ }}\le\dfrac{1}{2}\)
Cho a, b,c dương. cmr: \(\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\ge\dfrac{1}{5}\left(a^2+b^2+c^2\right)\)
Cho a,b,c > 0 có a+b+c \(\le3\)
CMR : \(\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}+\dfrac{b}{\sqrt{2b^2+c^2}\sqrt{3}}+\dfrac{c}{\sqrt{2c^2+a^2}+\sqrt{3}}\le\dfrac{\sqrt{3}}{2}\)
Cho a, b, c dương và \(ab^2+bc^2+ca^2=3\). CM:
\(\dfrac{2a^5+3b^5}{ab}+\dfrac{2b^5+3c^5}{bc}+\dfrac{2c^5+3a^5}{ac}\ge15\left(a^2+b^2+c^2-2\right)\)
cho a, b, c > 0 và abc=1.
Chứng minh rằng: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3.CMR
\(\dfrac{1}{2a^2+3}+\dfrac{1}{2b^2+3}+\dfrac{1}{2c^2+3}\ge\dfrac{3}{5}\)
Cho a,b,c >0. Chứng minh rằng
2(\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\)) \(\ge\) 1+\(\dfrac{b}{b+2a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\)
chứng minh \(\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\le\dfrac{1}{9}\)