\(\dfrac{16}{2^n}=2\)
\(\Rightarrow16=2^n.2\)
\(\Rightarrow8=2^n\)
\(\Rightarrow2^3=2^n\)
\(\Rightarrow n=3\)
\(\dfrac{16}{2^n}=2\)
\(\Rightarrow16=2^n.2\)
\(\Rightarrow8=2^n\)
Vì \(8=2^3\)
\(\Rightarrow n=3\)
Vậy ............
Chúc bạn học tốt!
\(\dfrac{16}{2^n}=2\)
\(\Rightarrow16=2^n.2\)
\(\Rightarrow8=2^n\)
\(\Rightarrow2^3=2^n\)
\(\Rightarrow n=3\)
\(\dfrac{16}{2^n}=2\)
\(\Rightarrow16=2^n.2\)
\(\Rightarrow8=2^n\)
Vì \(8=2^3\)
\(\Rightarrow n=3\)
Vậy ............
Chúc bạn học tốt!
1, thực hiện phép tính
\(\dfrac{\left(\dfrac{2}{5}\right)^9.10^9-\left(\dfrac{-9}{4}\right)^5:\left(\dfrac{-3}{16}\right)^{10}}{4^{12}+16^9}\)
2,CMR:\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.......+\dfrac{1}{n^2}< \dfrac{2}{3}\)với n\(\ge\)4
\(S+\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+....+\dfrac{n^2-1}{n^2}\) không là số nguyên
CMR: Với mọi số tự nhiên n\(\ge\)2 thì tổng:
\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\)
Tìm tập hợp các số nguyên x thỏa mãn:
a) \(3\dfrac{1}{3}:2\dfrac{1}{2}-1< x< 7\dfrac{2}{3}.\dfrac{3}{7}+\dfrac{5}{2}\)
b) \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
Help me.
Tìm số nguyên x ,nếu biết
a, \((\dfrac {1}{2}-\dfrac {1}{6}).3^x+3^{x+1}= 3^{16}+3^{13}\)
b, \((\dfrac {1}{2}-\dfrac {1}{3}).6^{x+2}-6^x = 6^{14}-6^{13}\)
c, \((\dfrac {1}{3}+\dfrac {1}{6}).2^{x+4}-2^x=2^{13}-2^{10}\)
d, \((\dfrac {1}{2}-\dfrac {1}{6}.3^{x+4} - 4.3^x =3^{16}-4.3^{13}\)
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
Chứng minh rằng \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\) không phải là một số nguyên
Tính :
\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\) . \(\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{258}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)
P = \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+....+\dfrac{1}{16}\left(1+2+3+...+16\right)\)