Cho tam giác ABC có A(2;1) , B(0;1) và C(-1;2) .
Tìm điểm K \(\in\) d: y = 2x-1 để \(\left|\overrightarrow{KA}-\overrightarrow{3KB}\right|\) đạt giá trị nhỏ nhất
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)
Cho tam giác ABC có BC = \(\sqrt{6}\) , AC = 2 và AB = \(\sqrt{3}+1\) và . Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
Giải bất phương trình
1) \(\frac{x^4-1}{x^2+3x}+x^2\ge1\)
2) \(\left(x^4-5x^2+4\right)\left(\frac{x-2}{x}-3\right)\le0\)
3) \(\left(\frac{4}{x}-\frac{2}{x-1}\right)\left(\frac{x^2+1}{x}-2\right)\le0\)
4) \(\left(\sqrt{x^3-4x}-\sqrt{15}\right)\sqrt{\frac{1+x}{x}-2}\le0\)
Cho tam giác ABC. Gọi \(l_a\) là độ dài đường phân giác kẻ từ A. CMR:
a,\(l_a=\dfrac{2bc.cos\dfrac{1}{2}}{b+c}\)
b,\(cos\dfrac{1}{2}=\sqrt{\dfrac{p\left(p-a\right)}{bc}}\)
1/ Cho tam giác ABC có AB = 2, BC = 3 và ABC=60
Tính chu vi và diện tích của tam giác ABC
1. Tính độ dài phân giác trong AD của \(\Delta ABC\) theo \(a=BC;b=CA;c=AB;\alpha=\widehat{BAC}\)
2. Cho \(\Delta ABC,G\) là trọng tâm và M tùy ý.
CM: \(MA^2+MB^2+MC^2=3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
3. Cho \(\Delta ABC\), tìm max \(P=cosA+cosB+cosC\)
4. Cho \(\Delta ABC\), tìm min \(Q=cos2A+cos2B+cos2C\)
5. Cho \(\Delta ABC\), điểm M tùy ý. Tìm min \(F=\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}\)
6. CM: \(F=cos2A+cos2B-cos2C\le\dfrac{3}{2}\)
7. Tứ giác ABCD nội tiếp \(\left(O;R\right)\).
Tìm \(M\in\left(O;R\right)\) sao cho \(F=MA^2+MB^2+MC^2-3MD^2\) đạt min, max