\(4cosa.cos\left(\frac{\pi}{3}-a\right).cos\left(\frac{\pi}{3}+a\right)=2cosa.\left(cos\frac{2\pi}{3}+cos2a\right)\)
\(=2cosa\left(cos2a-\frac{1}{2}\right)=2cosa.cos2a-cosa\)
\(=cos3a+cosa-cosa=cos3a\)
\(4cosa.cos\left(\frac{\pi}{3}-a\right).cos\left(\frac{\pi}{3}+a\right)=2cosa.\left(cos\frac{2\pi}{3}+cos2a\right)\)
\(=2cosa\left(cos2a-\frac{1}{2}\right)=2cosa.cos2a-cosa\)
\(=cos3a+cosa-cosa=cos3a\)
chứng minh rằng
a)
\(\frac{1-2\text{s}in^2x}{2cot\left(\frac{\pi}{4}+\alpha\right).c\text{os}^2\left(\frac{\pi}{4}-\alpha\right)}=1\)
b)
\(\frac{\frac{\sqrt{3}}{2}c\text{os}2\text{a}-\frac{1}{2}sin2\text{a}}{1-\frac{1}{2}c\text{os}2\text{a}-\frac{\sqrt{3}}{2}sin2\text{a}}=tan\left(a+\frac{\pi}{4}\right)\)
\(P=sin^2x+c\text{os}\left(\frac{\pi}{3}-x\right)c\text{os}\left(\frac{\pi}{3}+x\right)\)không phụ thuộc vào x
\(2cos\left(\frac{\pi}{4}+x\right)cos\left(\frac{\pi}{4}-x\right)=c\text{os}2x\)
chứng minh rằng
a)
\(\frac{sin\text{a}}{1+c\text{os}a}+cot\text{a}=\frac{1}{sin\text{a}}\)
b)\(\frac{1}{c\text{os}a}-\frac{c\text{os}a}{1+sin\text{a}}=t\text{ana}\)
c) \(\frac{t\text{ana}-sin\text{a}}{sin^3a}=\frac{1}{c\text{os}a\left(1+c\text{os}a\right)}\)
d) \(\frac{sin\text{a}+c\text{os}a-1}{sin\text{a}-c\text{os}a+1}=\frac{c\text{os}a}{1+sin\text{a}}\)
chứng minh rằng:
a)\(\frac{c\text{os}a.cot\text{a}-sin\text{a}.t\text{ana}}{\frac{1}{sin\text{a}}-\frac{1}{c\text{os}a}}=1+sin\text{a}.c\text{os}a\)
b)\(\frac{c\text{os}a+sin\text{a}-1}{c\text{os}a-sin\text{a}+1}=\frac{sin\text{a}}{1+c\text{os}a}\)
c)\(\frac{sin\text{a}}{1+c\text{os}a}+\frac{1+c\text{os}a}{sin\text{a}}=\frac{2}{sin\text{a}}\)
\(\frac{sin2a-c\text{os}2a}{sin2a-c\text{os}2a}=tan4a-\frac{1}{c\text{os}4a}\)
Rút gọn các biểu thức sau:
1) \(A=2cosx+3cosx\left(\pi-x\right)-sin\left(\frac{7\pi}{2}-x\right)+tan\left(\frac{3\pi}{2}-x\right)\)
2) \(B=2sin\left(\frac{\pi}{2}+x\right)+sin\left(5\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
1) Cho sin (\(\pi\)+a) = \(\frac{-1}{3}\) và \(\frac{\pi}{2}< a< \pi\). Tính P= tan (\(\frac{7\pi}{2}-a\))
2) Cho góc a thỏa mạc \(\frac{\pi}{2}< a< 2\pi\)và tan (\(\left(a+\frac{\pi}{4}\right)\) =1. Tính P= cos \(\left(a-\frac{\pi}{6}\right)+sina\)
3)Cho góc a thõa mãn \(\frac{\pi}{2}< a< 2\pi\) và cot \(\left(a+\frac{\pi}{3}\right)=-\sqrt{3}\) . Tính giá trị biểu thức P= sin\(\left(a+\frac{\pi}{6}\right)+cosa\)
4) Cho góc a thõa mãn sinacosa=\(\frac{12}{25}\) và sin a + cos a>0. Tính P= \(Sin^3a+cos^3a\)
5) Cho góc a thõa mãn sin a+ cos a =m. Tính P=\(\left|Sina-cosa\right|\)
Xin mọi người giải giúp em nha, nếu có thể chi tiết càng tốt. Em xin cảm ơn
Cho \(-\frac{\pi}{4}< \alpha< \frac{\pi}{6}\). Xác định dấu của biểu thức
\(A=\frac{cos2\alpha.sin\left(2\alpha+\frac{\pi}{2}\right)}{tan\left(\alpha+\frac{\pi}{3}\right)}\)