Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi H là trung điểm của AB. Tính cosin của góc giữa SC và (SHD)
1. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(0;2), B(4;2). Tìm điểm M trên đoạn thẳng AB để parabol (P) đỉnh O và đi qua điểm M chia tam giác vuông OAB thành hai phần có diện tích bằng nhau.
2. Cho hình phẳng (H ) giới hạn bởi các đường \(y=x^2,y=2x\) . Gọi S là tập hợp các giá trị của tham số thực k để đường thẳng x = k2 chia hình phẳng (H) thành hai phần có diện tích bằng nhau. Hỏi tập hợp S có bao nhiêu phần tử?
Đề khảo sát năng lực lớp 12, Sở GD-ĐT Hà Nội, mã đề 105:
Câu 46. Cho hàm số \(f\left(x\right)=x^3-3x\). Số hình vuông có bốn đỉnh nằm trên đồ thị hàm số \(y=f\left(x\right)\) là?
A. 4 B. 2 C. 3 D. 1
Câu 47. Trong không gian Oxyz, cho điểm A(-2;6;0) và mặt phẳng (a): 3x + 4y + 89 = 0. Đường thẳng d thay đổi nằm trên mặt phẳng (Oxy) và luôn đi qua điểm A. Gọi H là hình chiếu vuông góc của M (4;-2;3) trên đường thẳng d. Khoảng cách nhỏ nhất từ H đến mặt phẳng (a) bằng?
A. 15 B. \(\dfrac{68}{5}\) C. 20 D. \(\dfrac{93}{5}\)
Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B', C' lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q (Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa.
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B', C' lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q (Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa.Bài 5. Cho tam giác ABC (AB<AC) nội tiếp (O), M là trung điểm BC. Các điểm N, P thuộc đoạn BC sao cho MN=MP. Các đường thẳng AM, AN, AP cắt (O) lần lượt tại D, E, F. Chứng minh rằng BC, EF và tiếp tuyến của (O) tại D đồng quy.Bài 6. Cho tam giác ABC ngoại tiếp đường tròn (I). Gọi D, E, F lần lượt là các tiếp điểm của (I) với các cạnh BC, CA, AB . Các điểm M, N thuộc (I) sao choEM||FN||BC. Gọi P, Q lần lượt là các giao điểm của BM, CN với (I). Chứng minh BC, PE, QF đồng quy.Bài 7. Cho tam giác ABC nội tiếp trong đường tròn (O) có A cố định và B, C thay đổi trên (O) sao cho BC luôn song song với mộtđường thẳng cố định cho trước. Các tiếp tuyến của (O) tại B và C cắt nhau tại K. Gọi M là trung điểm BC ,N là giao điểm của AM với (O). Chứng minh rằng đường thẳng KN luôn đi qua một điểm cố định.Bài 8. Cho tam giác nhọn ABC nội tiếp (O) (BC < 2R). Gọi D, E, F lần lượt là trung điểm BC, CA, AB và P, M, N lần lượt là hình chiếu vuông góc của A, B, C lên BC, DF, DE. Các tiếp tuyến tại M và N của đường tròn (PMN) cắt nhau tại một điểm S. Chứng minh S luôn thuộc một đường thẳng cố định khi điểm A di động trên (O).Bài 9. Cho điểm P nằm ngoài đường tròn (O). PC là tiếp tuyến của(O), PAB là cát tuyến, CD là đường kính của (O). Gọi E=OP giao BD . Chứng minh rằng CE⊥CA.Bài 10. Cho tứ giác điều hòa ABCD nội tiếp (O), M là trung điểmBD P=AM giao (O), Q=M giao (O).a) Chứng minh rằng AC AM , là hai đường đẳng giác của góc BAD.b) Chứng minh rằng CP||BD, AQ||BD.
Trong không gian Oxy, cho các điểm A (1;2;0), B (2;0;2), C (2;-1;3) và D (1;1;3). Đường thẳng đi qua C và vuông góc với mặt phẳng (ABD) có phương trình là ?
Cho 4 hình hộp kích thước bằng nhau, mỗi mặt của hình hộp được tô bằng 1
trong 4 màu xanh, đỏ, tím, vàng. Hãy đưa ra tất cả các cách xếp các hình hộp thành 1 dãy sao cho khi nhìn theo các phía trên xuống, đẳng trước và đằng sau của dãy đều có đủ cả 4 màu
xanh, đỏ, tím vàng.
Giúp mình với mình cảm ơn nhiều ạ
Câu 49 ạ
Giúp với ạ mình xin cảm ơn