Đặt \(log_3\left(x+y\right)=log_2\left(x^3+y^3\right)=a\Rightarrow\left\{{}\begin{matrix}x+y=3^a\\x^3+y^3=2^a\end{matrix}\right.\)
\(2^a=\left(x+y\right)^3-3xy\left(x+y\right)=3^{3a}-3^{a+1}xy\)
\(\Rightarrow xy=\frac{3^{3a}-2^a}{3^{a+1}}\)
Mặt khác \(\left(x+y\right)^2\ge4xy\Rightarrow3^{2a}\ge\frac{4\left(3^{3a}-2^a\right)}{3^{a+1}}\)
\(\Leftrightarrow3^{3a+1}\ge4.3^{3a}-2^{a+2}\)
\(\Leftrightarrow2^{a+2}\ge3^{3a}\)
\(\Leftrightarrow\left(a+2\right)ln2\ge3a.ln3\)
\(\Rightarrow a\le\frac{2ln2}{3ln3-ln2}\)
\(\Rightarrow x+y=3^a< 2\) \(\Rightarrow x=1\)
Có duy nhất 1 số nguyên dương x