Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thị Minh Phương

cmr \(t\left(x\right)=7^{2x+1}-48x-7⋮288\forall x\in N\)

Akai Haruma
14 tháng 8 2017 lúc 2:01

Lời giải:

\(7^3\equiv 1\pmod 9\) nên xét modulo $3$ cho $x$ :

+ Nếu \(x=3k\) :

\(\Rightarrow t(x)=7^{6k+1}-144k-7=7.7^{6k}-144k-7\equiv 7-144k-7\equiv 0\pmod 9\)

+ Nếu \(x=3k+1\):

\(\Rightarrow t(x)=7^{6k+3}-144k-55=7^3.7^{6k}-144k-55\equiv 7^3-55\equiv 0\pmod 9\)

+ Nếu \(x=3k+2\):

\(\Rightarrow t(x)=7^{6k+5}-144x-103=7^5.7^{6k}-144k-103\equiv 7^5-103\equiv 0\pmod 9\)

Từ 3 TH trên , suy ra \(t(x)\vdots 9\) $(1)$

Mặt khác:

\(t(x)=7(7^{2x}-1)-48x=7(7^x-1)(7^x+1)-48x\)

\( \bullet\) Nếu \(x\) chẵn, đặt $x=2t$ :

\(t(x)=7(7^t-1)(7^t+1)(7^x+1)-96t\)

+ $t$ lẻ:

\(\left\{\begin{matrix} 7^t-1\vdots 2\\ 7^x+1\vdots 2\\ 7^t+1\equiv (-1)^t+1\equiv 0\pmod 8\\ 96t\vdots 32\end{matrix}\right.\Rightarrow 7(7^t-1)(7^t+1)(7^x+1)-96t\vdots 32\)

\(\Rightarrow t(x)\vdots 32\)

+ $t$ chẵn:

\(\left\{\begin{matrix} 7^t-1\equiv (-1)^t-1\equiv 0\pmod 8\\ 7^x+1\vdots 2\\ 7^t+1\vdots 2\\ 96t\vdots 32\end{matrix}\right.\Rightarrow 7(7^t-1)(7^t+1)(7^x+1)-96t\vdots 32\)

\(\Rightarrow t(x)\vdots 32\)

\(\bullet \) Nếu \(x\) lẻ, đặt $x=2t+1$

Khi đó \(t=7(7^x-1)(7^x+1)-96t-48\)

\(\left\{\begin{matrix} 7^x+1\equiv (-1)^x+1= (-1)^{2t+1}+1\equiv 0\pmod 8\\ 7^x-1\vdots 2\\ 7^x-1\equiv (-1)^x-1=(-1)^{2t+1}-1\equiv -2\pmod 4\end{matrix}\right.\)

Do đó, \(7(7^x-1)(7^x+1)\) chia hết cho $16$ mà không chia hết cho $32$

Suy ra \(7(7^x-1)(7^x+1)=32k+16\Rightarrow t(x)=32k-96t-32\vdots 32\)

Từ 2TH trên, ta thu được \(t(x)\vdots 32(2)\)

Từ \((1),(2), UCLN(9,32)=1\Rightarrow t(x)\vdots (9.32=288)\) (đpcm)

\(\)


Các câu hỏi tương tự
Hoàng Thị Minh Phương
Xem chi tiết
Người hùng thời gian...
Xem chi tiết
Lan Anh
Xem chi tiết
Thỏ cute
Xem chi tiết
Vũ Hà Khánh Linh
Xem chi tiết
Kudo shinichi
Xem chi tiết
Đỗ Linh Chi
Xem chi tiết
Lê Dương
Xem chi tiết
Phạm Ngọc Mai
Xem chi tiết