tính A = \(\dfrac{\sqrt{3+2\sqrt{2}}-1}{\sqrt{3+2\sqrt{2}}}\)
Cho A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\) với x ≥ 0, x ≠ 0
a) Rút gọn A
b) Tính giá trị của A khi x = \(6+4\sqrt{2}\)
cho tg ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB và AC. CM
a) \(AH^3=BD.CE.BC\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{DB}{EC}\)
c) \(\dfrac{1}{HD^2}+\dfrac{1}{HC^2}=\dfrac{1}{HE^2}+\dfrac{1}{HB^2}\)
d) \(\sqrt{HD.DB}+\sqrt{EH.EC}=\sqrt{AH.BC}\)
e) \(\sqrt[3]{BD^2}+\sqrt[3]{CD^2=\sqrt[3]{BC^2}}\)
Tìm x để \(\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\) < 2
Tìm GTNN của \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị
của góc nhọn a
\(\left(\sqrt{\dfrac{1+\sin\alpha}{1-\sin\alpha}}+\sqrt{\dfrac{1-\sin\alpha}{1+\sin\alpha}}\right)\dfrac{1}{\sqrt{1+\tan^2\alpha}}\)
Cho 0o < x < 90o, CM các đẳng thức
1/ \(\dfrac{1}{\tan x+1}+\dfrac{1}{\cot x+1}=1\)
2/ \(\dfrac{\cos x}{\sin x-\cos x}+\dfrac{\sin x}{\sin x+\cos x}=\dfrac{1+\cot^2x}{1-\cot^2x}\)
3/ \(\left(\sqrt{\dfrac{1+\sin x}{1-\sin x}}-\sqrt{\dfrac{1-\sin x}{1+\sin x}}\right)^2=4\tan^2x\)
4/ \(\left(\sqrt{\dfrac{1+\cos x}{1-\cos x}}-\sqrt{\dfrac{1-\cos x}{1+\cos x}}\right)^2=4\cot^2x\)
Cho 00 < x < 900. Chứng minh các đẳng thức sau:
1. sin6 x +cos6 x = 1 - 3sin2 x cos2 x.
2. sin4 x - cos4 x = 1 - 2cos2 x.
3. tan2 x - sin2 x = tan2 x.sin2x.
4. cot2 x - cos2 x = cot2 x.cos2 x.
5.\(\left(\sqrt{\dfrac{1+sinx}{1-sinx}}-\sqrt{\dfrac{1-sinx}{1+sinx}}\right)^2\) = 4 tan2 x.
6.\(\left(\sqrt{\dfrac{1+cosx}{1-cosx}}-\sqrt{\dfrac{1-cosx}{1+cosx}}\right)^2\) = 4 cot2 x.
CM: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\)
vs mọi a