cach khac\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{4}{a+b}\right)^2=\dfrac{25}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)
\(\Rightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)
Áp dụng BĐT Holder ta có:
\(\left(a+b\right)\left(a+b\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\left(1+1\right)^3=8\)
Lại có:
\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2=4+a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge4+\dfrac{1}{2}+8=\dfrac{25}{2}\)