Áp dụng bđt AM-GM:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge\frac{2a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\)
Cộng theo vế và rút gọn => đpcm
\("="\Leftrightarrow a=b=c\)
Áp dụng bđt AM-GM:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge\frac{2a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\)
Cộng theo vế và rút gọn => đpcm
\("="\Leftrightarrow a=b=c\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
cho a,b,c>0.CMR:\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c>0 CMR: \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
\(a.\frac{{{x^2}}}{{{x^2} + 2yz}} + \frac{{{y^2}}}{{{y^2} + 2zx}} + \frac{{{z^2}}}{{{z^2} + 2xy}} \ge 1\)
\(b.\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} \ge \frac{3}{2}\)
Cho các số thực dương a,b,c. CMR
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{c^2+b^2}+\frac{c^3}{a^2+c^2}\ge\frac{a+b+c}{2}\)
Cho a,b,c >0, a+b+c=3. CMR: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c > 0 thỏa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). CMR:
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\)
Cho các số a,b,c ≥ 0. CMR
\(\frac{a^2}{b+c}\) + \(\frac{b^2}{a+c}\) +\(\frac{c^2}{a+b}\) ≥ \(\frac{a+b+c}{2}\)