Giải:
\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018\)
\(=x^{2n}+x^n-2x^n-2-\left(x^{n-3}.x^{n+3}\right)+x^{n-3}.x^3+2018\)
\(=x^{2n}-x^n-2-x^{n-3+n+3}+x^{n-3+3}+2018\)
\(=x^{2n}-x^n-2-x^{2n}+x^n+2018\)
\(=-2+2018\)
\(=2016\)
Vậy ...