a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)
\(=2x^2-6x-41-2x^2-12x\)
=-18x-41
b: \(=2x^2-6x-2x^2+6x+14=14\)
c: \(=x^3+1-x^3+1=2\)
a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)
\(=2x^2-6x-41-2x^2-12x\)
=-18x-41
b: \(=2x^2-6x-2x^2+6x+14=14\)
c: \(=x^3+1-x^3+1=2\)
Bài 1: Rút gọn các biểu thức sau:
a) \(3x^2\) - 2x( 5+ 1,5x) +10
b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)
c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)
Bài 2: Tìm x, biết:
a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24
b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)
c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)
Bài 3: Tính giá trị của các biểu thức sau:
a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)
b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)
Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:
a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)
b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)
c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)
Bài 5: Tính giá trị của biểu thức:
a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)
b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)
c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)
Chứng minh rằng các giá trị biểu thức sau không phụ thuộc vào giá trị của biến
a) \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
b)\(x\left(2x+1\right)-x^2\left(x+2\right)+^3-x+3\)
c)\(4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
Rút gọn các biểu thức :
a, \(\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)\)
b, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(c,\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
Thực hiện phép tính:
a) \(2x.\left(2x^2+3x-1\right)\)
b) \(\left(x+5\right).\left(2x-3\right)\)
c) \(\left(x+1\right)^2-x\left(2+3x\right)\)
d) \(\left(2x^3+x^2-8x+3\right):\left(2x-3\right)\)
Câu 1: Tính
a. \(-2x^2+3\left(x^2+xy+2\right)\)
b. \(xy^2-y^2\left(x-2+3x^2\right)\)
Câu 2: Tìm x
a. \(3\left(5x-1\right)-x\left(x+1\right)+x^2=14\)
b. \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)
Câu 3: \(A=\frac{1}{5}x\left(10x-15\right)-2x\left(x-5\right)-7x\)
Chứng minh biểu thức A không phụ thuộc vào biến.
Tìm x, biết:
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
chứng minh rằng biểu thức không thuộc vào x,y
a, 2x (3x - 1) \(x^2\) (x + 6 ) + x (\(x^2\) -3) + 5 (x - 2)+ 3
b, ( x - y) (\(x^2+xy+y^2)+\left(x+y\right)\left(x^2-xy+y^2\right)\)\(\times2\left(x^3-5\right)\)
c\(\left(x-1\right)\left(x^2-2x+1\right)-\left(x+1\right)\left(x^2+2+1\right)-6\left(x^2+5\right)\)
giúp mình nhé mình đang cần gấp
Thực hiện phép tính các đa thức sau
a) \(\left(3x^2-2x+5\right)\left(2x^2-3x+1\right)\)
b) \(\left(\dfrac{3}{2}x^2-\dfrac{2}{3}x-\dfrac{5}{3}\right)\left(4x^2-\dfrac{3}{2}x-3\right)\)
c) \(\left(\dfrac{3}{4}x^2+2x-\dfrac{1}{3}\right)\left(4x^2-\dfrac{3}{2}x-3\right)\)
d) \(\left(-\dfrac{1}{3}+2x-x^2\right)\left(-2x^2-\dfrac{1}{2}x+2\right)\)
e) \(\left(3xy+\dfrac{1}{2}x\right)\left(3x^{2y}-3xy^2-1\right)\)