Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thắng Thịnh

cmr: \(a^3+b^3+c^3=3abc\) và a,b,c >0 thì a=b=c

Lightning Farron
2 tháng 11 2016 lúc 11:41

Ta có a,b,c dương nên ta áp dụng Bđt Cô-si ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi \(a=b=c\)

Đpcm

thanh ngọc
2 tháng 11 2016 lúc 13:15

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)

\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a^2-2ab+b^2\right)\left(b^2-2bc+c^2\right)\left(c^2-2ac+a^2\right)=0\)

\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0.\)

\(\left(a-b\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

\(\left(c-a\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a-b=b-c=c-a\)

\(\Rightarrow a=b=c\left(dpcm\right)\)

 

 


Các câu hỏi tương tự
Cúc Suri
Xem chi tiết
PK
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Đỗ Khắc Dũng
Xem chi tiết
logo212
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
đỗ thanh kiệt
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Xi Xiao
Xem chi tiết