a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 + 4b2 + 4c2 - 4ab + 4ac - 8bc ≥ 0
⇔ (a - 2b + 2c)2 ≥ 0 (đúng ∀abc)
Vậy a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 + 4b2 + 4c2 - 4ab + 4ac - 8bc ≥ 0
⇔ (a - 2b + 2c)2 ≥ 0 (đúng ∀abc)
Vậy a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
CMR : a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
Cho a+4b=1. CMR \(a^2+4b^2\ge\frac{1}{5}\)
câu 27 trong bất phương trình sau, bất phương trình nào vô nghiệm :
a) 8+x<4
b) 2-x< -x-4
c) 1+x>x
d) 5+2x<0
Cho các số dương a, b, c có tích bằng 1.
CMR:\(\left(a+b\right)\left(ab+1\right)\ge4ab\)
a) Tìm các số tự nhiên x thõa mãn bất phương trình sau : \(5x-2\le2x+8\)
b) c/m : \(\left(a+b\right)^2\ge4ab\)
1.Cho a,b,c >0. Chứng minh rằng:
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2^{ }+b^2}\ge3\)2.
Cho x,y,z là các số thực thỏa mãn 2 (y2 + yz + z2) + 3x2= 36. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x + y + z
Cm căn 4a+1+ căn 4b+1+ căn 4c+1<5
Cho a+b-c=0 đặt A=\(\dfrac{4bc-a^2}{-bc+2a^2}\)
B=\(\dfrac{4ac-b^2}{2b^2-ac}\) , C=\(\dfrac{4ab-c^2}{ab+2c^2}\)
CM:A.B.C=1
Cho a,b,c>0. Chứng minh: \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\)\(\ge\frac{9}{4a+4b+4c}\)