CMR: \(2a-5b+6c⋮17\) nếu \(a-11b+3c⋮17\)(a,b,c thuộc Z)
Help me!
a, CMR: 3n+2 - 2n+4 +3n +2n \(⋮\) 30 (với \(\forall\) n nguyên dương)
b, CMR: 2a-5b+6c \(⋮\) 17 nếu a-11b+3c \(⋮\) 17
a, Chứng minh rằng : Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
b, Cho a , b là các số nguyên . Chứng minh rằng : Nếu ( 2a + 3b ) chia hết cho 17 thì ( 9a + 5b ) chia hết cho 17
a) Chứng minh rằng: 3a+2b\(⋮\) 17\(\Leftrightarrow\) 10a+b \(⋮\) 17 (a,b\(\in\) Z )
b) Cho đa thức f(x)=ax2+bx+c(a,b,c nguyên )
CMR nếu f(x) chia hết cho 3 thì mọi giá trị của x thì a,b,c đều chia ht cho 3
a, c/m rằng: 3a+2b \(⋮\) 17 \(\Leftrightarrow\) 10a+b \(⋮\) 17 ( a,b,c \(\in\) Z )
b, cho đa thức: \(f\left(x\right)\)= ax2 + bx + c ( a,b,c nguyên )
CMR: nếu \(f\left(x\right)\) chia hết cho 3 vs mọi giá trị của x thì a,b,c đều chia hết cho 3
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) CMR:
\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \((a+c).((b-d)=(a-c).(b-d)\)
b, \((a+c).b=(b+d).a\)
c, \(a.(b-d)=b(a-c)\)
d, \((b+d).c=(a+c).d\)
e, \((b-d).c=(a-c).d\)
f, \((a+b).(c-d)=(a-b).(c+d)\)
g, \((2a+3c).(2b-3d)=(2a-3c).(2b+3d)\)
h, \((4a+3b).(4c-3d)=(4a-3b).((4c+3d)\)
i, \((2a+3b).(4c-5d)=(4a-5b).(2c+3d)\)
k, \((4a+5b).(7c-11d)=(7a-11b).(4c+5d)\)
Cho a,b \(\in N\)và \(a-5b⋮17\)
CMR:\(100a+b⋮17\)
Cho a/b =c/d .Chứng minh
a. a-b/a+b = c-d/c+d
b.2a + 5b/3a + 4b = 2c - 5d/3c + 4d