Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhan Thanh

a) Chứng minh rằng: 3a+2b\(⋮\) 17\(\Leftrightarrow\) 10a+b \(⋮\) 17 (a,b\(\in\) Z )

b) Cho đa thức f(x)=ax2+bx+c(a,b,c nguyên )
CMR nếu f(x) chia hết cho 3 thì mọi giá trị của x thì a,b,c đều chia ht cho 3

Nguyễn Lê Phước Thịnh
21 tháng 4 2020 lúc 11:17

a) Ta có: 3a+2b⋮17

⇔8(3a+2b)⋮17

Ta có: 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

=17(2a+b)⋮17

hay 8(3a+2b)+(10a+b)⋮17

mà 8(3a+2b)⋮17(cmt)

nên 10a+b⋮17(đpcm)

b) Ta có: \(F\left(0\right)=a\cdot0^2+b\cdot0+c=c\)

\(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)

\(F\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a-b+c\)

mà F(x)⋮3

nên F(0)⋮3; F(1)⋮3; F(-1)⋮3

hay c⋮3(đpcm 3); F(1)+F(-1)⋮3; F(1)-F(-1)⋮3

Ta có: F(1)+F(-1)⋮3(cmt)

⇔a+b+c+a-b+c⋮3

hay 2a+2c⋮3

⇔a+c⋮3

mà c⋮3(cmt)

nên a⋮3(đpcm1)

Ta có: F(1)-F(-1)⋮3(cmt)

⇔a+b+c-a+b-c⋮3

hay 2b⋮3

mà 2\(⋮̸\)3

nên b⋮3(đpcm2)


Các câu hỏi tương tự
 nguyễn hà
Xem chi tiết
Tạ Phương Anh
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Online Math
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Ruby
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Roxie
Xem chi tiết
Trà My Kute
Xem chi tiết