Cho các số a, b, c khác 0 bất kì sao cho ac + bc + 3ab < 0. Chứng minh phương trình sau luôn có nghiệm: \(\left(ax^2+bx+c\right)\left(bx^2+cx+a\right)\left(cx^2+ax+b\right)=0\)
Chứng minh rằng phương trình \(\left(ax^2+2bx+c\right)\left(bx^2+2cx+a\right)\left(cx^2+2ax+b\right)=0\) luôn có nghiệm với mọi số thực a,b,c
cho phương trình: \(ax^2+bx+c=0\left(a\ne0,c\ne0\right)\) có nghiệm \(x_1>0\) và nghiệm còn lại âm
Chứng minh rằng \(cx^2+bx+a=0\) có nghiệm x\(_2\) >0 và \(x_1+x_2+x_1.x_2\ge3\)
Cho a,b,c (c≠0) các số đôi một khác nhau, biết : \(\left\{{}\begin{matrix}x^2+ax+bx=0\\x^2+bx+ax=0\end{matrix}\right.\) có ít nhất 1 nghiệm chung
a)Tìm các nghiệm còn lại của 2 phương trình
b) CMR: các nghiệm còn lại của 2 phương trình là nghiệm của phương trình \(x^2+cx+ab=0_{ }\)
Cho 3 số thực a,b,c sao cho phương trình ax2+bx+c=0 có 2 nghiệm thuộc đoạn (0;1). Tìm giá trị lớn nhất của biểu thức \(P=\frac{\left(a-b\right)\left(2a-b\right)}{a\left(a-b+c\right)}\)
Tìm các số a;b sao cho phương trình \(x^2+ax+6=0\)và \(x^2+bx+12=0\)có ít nhất 1 nghiệm chung và \(\left|a\right|+\left|b\right|\)nhỏ nhất
Cho pt \(ax^2+bx+c=0\left(a\ne0\right)\) có 2 nghiệm \(x_1;x_2\) t/m \(0\le x_1\le x_2\le2\).
Tìm min \(L=\dfrac{3a^2-ab+ac}{5a^2-3ab+b^2}\)
a và b thỏa mãn \(\frac{1}{a}+\frac{1}{b}1=\frac{1}{2}\). C/m PT \(\left(x^2+ax+b\right)\left(x^2+bx+a\right)=0\) luôn có nghiệm
Cho \(f\left(x\right)=ax^3+4x\left(x^2-1\right)+8\) và \(g\left(x\right)=x^3+4x\left(bx+1\right)+c-3\) xác định a, b, c để \(f\left(x\right)=g\left(x\right)\)