Lời giải:
Ta có:
\(n^4+4=(n^2)^2+2^2=(n^2)^2+2^2+2.2.n^2-2.2.n^2\)
\(=(n^2+2)^2-(2n)^2\)
\((n^2+2-2n)(n^2+2+2n)\)
Với \(n\in \mathbb{N}; n>1\) thì \(n^2+2-2n; n^2+2+2n>1\)
Do đó \(n^4+4=(n^2+2-2n)(n^2+2+2n)\) là hợp số
Ta có đpcm.
Lời giải:
Ta có:
\(n^4+4=(n^2)^2+2^2=(n^2)^2+2^2+2.2.n^2-2.2.n^2\)
\(=(n^2+2)^2-(2n)^2\)
\((n^2+2-2n)(n^2+2+2n)\)
Với \(n\in \mathbb{N}; n>1\) thì \(n^2+2-2n; n^2+2+2n>1\)
Do đó \(n^4+4=(n^2+2-2n)(n^2+2+2n)\) là hợp số
Ta có đpcm.
Cm rằng với mọi người € Z thì
a. n 2(n+1)+2n(n+1) chia hết cho 6
b. (n+2) 2-(n-2)2 chia hết cho 8
giúp hộ mk câu này với : chứng minh rằng : 36-(3n+6) chia hết cho 9 với mọi n thuộc vào tập hợp số nguyên
CM rằng :
n^2+4n+3 chia hết cho 8 với mọi n lẻ.
Giúp mình với nha.thanks trước ạ😘
chứng minh rằng với mọi số nguyên n thì
\(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2⋮5\)
chứng minh rằng : n^3-n chia hết cho 6 với mọi số nguyên n
Chứng minh rằng
a) n^3-n chia hết cho 6 với mọi số nghuyên n
b) biểu thức n/3+n^2/2+n^3/6 luôn có giá trị nguyên với mọi giá trị n nguyên
bài 58: chứng minh rằng n3 - n chia hết cho 6 với mọi số nguyên n.
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
Chứng minh rằng : Với mọi số nguyên n thì \(n^5-n\) luôn chia hết cho 30