thử sức xíu, có sai mong bỏ qua, xie xie :3
Giả sử cả 2 pt đều vô nghiệm
\(\Rightarrow\left\{{}\begin{matrix}a_1^2-4b_1< 0\\a_2^2-4b_2< 0\end{matrix}\right.\Rightarrow a_1^2-4b_1+a_2^2-4b_2< 0\)
Có \(a_1^2+a_2^2\ge2a_1a_2\)
\(\Rightarrow a_1^2+a_2^2-4\left(b_1+b_2\right)\ge2a_1a_2-4\left(b_1+b_2\right)\)
Theo gt có: \(a_1a_2-2\left(b_1+b_2\right)\ge0\)
Mà \(a_1^2+a_2^2-4\left(b_1+b_2\right)< 0\Rightarrow2a_1a_2-4\left(b_1+b_2\right)< 0\) (trái vs giả thiết)
=> Ít nhất 1 trong 2 pt có nghiệm