Tìm hàm số f(x) thỏa mãn
a)\(f\left(x-1\right)+3f\left(\dfrac{1-x}{1-2x}\right)=1-2x,\forall x\ne\dfrac{1}{2}\)
b)\(f\left(x\right)+f\left(\dfrac{1}{1-x}\right)=x+1-\dfrac{1}{x},\forall x\ne0;x\ne1\)
c) \(3f\left(x\right)-2f\left(f\left(x\right)\right)=x,\forall x\in Z\)
1)CM: \(\forall\) số \(\in\) Z m,n thì 4mn(m2 - n2) \(⋮\) 24
2) tìm tát cả các số có 4 chữ số \(\overline{abcd}\) sao cho \(\left\{{}\begin{matrix}a+b=cd\\c+d=ab\end{matrix}\right.\)
3) Tìm tất cả các bộ 3 số nguyên tố khác nhau (a,b,c) thỏa:
abc < ab + bc +ca
1. Tìm m để phương trình :
a. x2 - 2x - 3 + m = 0 có nghiệm \(\forall x\in\) [ -1 ; 3 )
b. -x2 + 2mx - m +1 = 0 có nghiệm \(\forall x\ge0\)
c. 2x2 - x - 1 = m có 2 nghiệm x1, x2 \(\in\left[-2;1\right]\)
d. x2 - 2x +1 - m = 0 có nghiệm duy nhất \(\in\) ( 0 ; 2 ]
e. \(\sqrt{x^2+4x+3}=\sqrt{x-m}\) có 2 nghiệm phân biệt
f. \(\sqrt{-x^2-x+2}=\sqrt{3x-m}\) có nghiệm duy nhất
g. \(\sqrt{x^2+2m-1}=\sqrt{x-2}\) có nghiệm
h. \(\sqrt{x^2-4mx+3}=\sqrt{1-m}\) có nghiệm
1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện
a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)
b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)
c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)
d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\)
2. Cho A có n phần tử. Với \(r\in Z^+\), gọi \(f\left(r;n\right)\) là số cách chọn ra k tập con của A sao cho các tập con này không có phần tử chung. Tính \(f\left(r;n\right)\) theo n biết
a) r = 1
b) r = 2
c) r = 3
d) r bất kì
3. Cho \(A=\left\{1;2;3;...;n\right\}\). Với mỗi tập X, kí hiệu m(X) là trung bình cộng các phần tử của X. Gọi S là tập các tập con khác tập rỗng của A. T = {m(X)/ \(X\in S\)}
Tính m(T)
m.n giúp với mk đang cần gấp
Hung nguyen Ace Legona Akai Haruma
cho pt \(2\left|x\right|=\left|x\right|-3m+5\) (m là tham số). Tìm tất cả các giá trị m để pt đã cho có 2 nghiệm phân biệt khi giá trị m là:
a. \(\forall m\in R\) b. \(m\ge\frac{5}{3}\) c. \(m< \frac{5}{3}\) d. \(m\le\frac{5}{3}\)
(giải cụ thể nhaaaa, thenk kiu )
Xác định tất cả các tham số m sao cho :\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) \(\forall x\in R\)
Tìm m thỏa mãn
a) \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0\) có tập nghiệm S=R
b) \(\left(m+1\right)x^2-2mx-\left(m-3\right)< 0\) vô nghiệm
c) \(f\left(x\right)=-x^2+2x+m-2018< 0\forall x\in R\)
d) \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm
Cho \(f\left(x\right)=x^2+2mx+2m-3\). Tìm m để f(x)<0 \(\forall x\in\left(-1;2\right)\)