Tìm m thỏa mãn
a) \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0\) có tập nghiệm S=R
b) \(\left(m+1\right)x^2-2mx-\left(m-3\right)< 0\) vô nghiệm
c) \(f\left(x\right)=-x^2+2x+m-2018< 0\forall x\in R\)
d) \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm
Tìm f(x) và g(x) thỏa mãn \(\left\{{}\begin{matrix}f\left(2x-1\right)+g\left(1-x\right)=x+1\\f\left(\dfrac{x}{x+1}\right)+2g\left(\dfrac{1}{2x+2}\right)=3\end{matrix}\right.\)
cho \(f\left[0;1\right]\rightarrow\left[0;1\right]\) thỏa mãn
\(\left\{{}\begin{matrix}f\left(1-x\right)=1-f\left(x\right)\\f\left(\frac{x}{3}\right)=\frac{f\left(x\right)}{2}\end{matrix}\right.\) ∀x∈\(\left[0;1\right]\)
1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện
a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)
b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)
c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)
d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\)
2. Cho A có n phần tử. Với \(r\in Z^+\), gọi \(f\left(r;n\right)\) là số cách chọn ra k tập con của A sao cho các tập con này không có phần tử chung. Tính \(f\left(r;n\right)\) theo n biết
a) r = 1
b) r = 2
c) r = 3
d) r bất kì
3. Cho \(A=\left\{1;2;3;...;n\right\}\). Với mỗi tập X, kí hiệu m(X) là trung bình cộng các phần tử của X. Gọi S là tập các tập con khác tập rỗng của A. T = {m(X)/ \(X\in S\)}
Tính m(T)
m.n giúp với mk đang cần gấp
Hung nguyen Ace Legona Akai Haruma
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
Cho \(f\left(x\right)=ax^2+bx+c\) thỏa mãn \(|f\left(x\right)|\le1,\forall|x|\le1\). Chứng minh rằng \(|f\left(x\right)|\le7,\forall|x|\le2\)
Cho \(f\left(x\right)=x^2+2mx+2m-3\). Tìm m để f(x)<0 \(\forall x\in\left(-1;2\right)\)
Cho p,q > 0 : \(\dfrac{1}{p}+\dfrac{1}{q}=1;u,v\ge0\)
CHứng minh rằng \(u.v\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)
Cho f,g : \(\left[a,b\right]\rightarrow R\) Liên tục và p,q ở câu (a) ta luôn có :
\(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}\)
Cho \(y=f\left(x\right)=2x^2-4x-1\) Có bao nhiêu giá trị nguyên \(m\in\left[-10;10\right]\) để phương trình \(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\) có 4 nghiệm phân biệt