Đặt \(ƯCLN\left(n+1;2n+3\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)
=> d = 1
Vậy ps trên tối giản
Đặt \(ƯCLN\left(n+1;2n+3\right)=d\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Leftrightarrow2n+3-2n-2⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy mọi phân số có dạng \(\dfrac{n+1}{2n+3}\) đều là phân số tối giản.