Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lệ Nguyễn Thị Mỹ

Chứng minh với mọi số nguyên dương n ta có: \(\dfrac{1}{2\sqrt{2}+1}+\dfrac{1}{3\sqrt{3}+2\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\dfrac{1}{\sqrt{n+1}}\)

Akai Haruma
7 tháng 9 2018 lúc 17:05

Lời giải:

Với 2 số $a,b$ dương, ta luôn có BĐT quen thuộc sau:

\(a^3+b^3\geq ab(a+b)\)

Cách chứng minh rất đơn giản, biến đổi tương đương ta có:

\(a^3+b^3-ab(a+b)\geq 0\)

\(\Leftrightarrow a^2(a-b)-b^2(a-b)\geq 0\Leftrightarrow (a-b)^2(a+b)\geq 0\) (luôn đúng với mọi $a,b>0$)

---------------------------------------

Áp dụng vào bài toán:

\((n+1)\sqrt{n+1}+n\sqrt{n}=(\sqrt{n})^3+(\sqrt{n+1})^3\geq \sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})\)

\(\Rightarrow \frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(\frac{1}{2\sqrt{2}+1}< 1-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......

\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cộng theo vế:

\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\)

Ta có đpcm.


Các câu hỏi tương tự
Đinh Thuận
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Nguyễn Viết Thắng
Xem chi tiết
Văn Quyết
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Hàn Băng Di
Xem chi tiết
Hàn Băng Di
Xem chi tiết
nguyen minh ngoc
Xem chi tiết
nguyen minh ngoc
Xem chi tiết