Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a - b ≠ 0, c - d ≠ 0) ta có thể suy ra được \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Giúp e câu cuối cùng với ah, 23h58 là e phải nộp ròi ah
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (b, d ≠ 0) ta suy ra được các tỉ lệ thức:
a/ \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b/ \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
c/ \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
d/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
e/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
f/ \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:
a) \(\dfrac{a-b}{a+b}\) \(=\dfrac{c-d}{c+d}\) ( với a+b \(\ne\)0 và c+d \(\ne\)0)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ( với b + d \(\ne\) 0) ta suy ra được \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Chứng minh rằng từ đẳng thức ad = bc ( c,d \(\ne\) 0 ), ta có thể suy ra được tỉ lệ thức \(\dfrac{a}{c}=\dfrac{b}{d}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (với \(b+d\ne0\)) suy ra được \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng ta có tỉ lệ thức sau: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
cmr :tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(voi b,d khac 0) ta suy ra duoc \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Cho \(a,b,c,d\ne0\). Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) hãy suy ra tỉ lệ thức \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)