b) \(x-x^2-2=-\left(x^2-x+2\right)=-[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\)<0 ∀\(x\)
b) \(x-x^2-2=-\left(x^2-x+2\right)=-[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\)<0 ∀\(x\)
chứng minh rằng
a) 9x2-6x+2>0 \(\forall x \)
b)x2+x+1>0 \(\forall x \)
c) 25x2-20x+7>0 \(\forall x \)
d)9x2-6xy+2y2+1>0 \(\forall x ,y\)
e) x2-xy+y2 \(\ge0\forall x,y\)
chứng minh \(x^2-x+2>0\forall x\)
Chứng minh các bất đẳng thức sau: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\left(\forall x,y>0\right)\)
I : Tìm ab để
f(x)=(a-1)x^3+(b+1)x+a+b=0 \(\forall\) x
Cho biểu thức A = \(\dfrac{x}{x+1}-\dfrac{3-3x}{x^2-x+1}+\dfrac{x+4}{x^3+1}\left(x\ne-1\right)\)
a, Rút gọn biểu thức A
b, CMR \(A>0\forall x\ne-1\)
c, Với x > 0. Tính GTLN của A
Chứng tỏ rằng:
x2 + y2 + 6x - 4y + 14 > 0 ∀ x, y ∈ R
a) CMR: \(\left(x^3+x^2+x+1\right)^2\ge16x^3\) với\(\forall x\ge0\)
b)Cho \(a;b;c>0\). CMR:
\(\sqrt{\dfrac{a}{b+c}}\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Chứng minh rằng : phương trình m( x - 3 ) + b = m2 - 2( m2 - x ) luôn có nghiệm dương ∀ m ≠ 2 .
a,chứng tỏ rằng với \(\forall\) a,b\(\ge\)0 thì:
(ax+by)(bx+ay)\(\ge\)(a+b)\(^2\)xy
b, với x,y,z >0 chứng mình rằng (x+y+z)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))\(\ge\)9