Bđt Mincowski nè (^~^)
Biến đổi tương đương:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\left(1\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)
\(\Leftrightarrow\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2abcd+\left(bd\right)^2\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi \(\dfrac{a}{b}=\dfrac{c}{d}\)