Chứng minh rằng:
\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}\le2\left(a+b+c\right)\) với a,b,c dương
cho a,b,c là các số dương thỏa mãn: a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
chứng minh rằng: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
cho ba số dương a,b,c .Chứng minh rằng \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(b+a\right)}\ge\dfrac{3}{2}\)
Cho a,b ≥ 0 thỏa mãn a2+b2 ≤ 2
Chứng minh rằng
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
Chứng minh rằng: \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với a\(\ge\)0; a\(\ne\)1
Cho \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
Tìm \(a\in Z\) để \(P\in Z\)
Rút gọn các biểu thức
M = \(\sqrt{\left(3a-1\right)^2}+2a-3\) với a \(\ge\dfrac{1}{3}\)
N = \(\sqrt{\left(4-a\right)^2}-a+5\) với a > 4
I = \(\sqrt{\left(3-2a\right)^2}+2-7\) với a < \(\dfrac{3}{2}\)
K = \(\dfrac{a^2-9}{4}\sqrt{\dfrac{4}{\left(a-2\right)^2}}\) với a < 3
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2