Ta có :
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\ge\left(a+c\right)^2+\left(b+d\right)^2\)
Theo BĐT Bu - nhi - a - cốp - xki ta có :
\(\left(1^2+1^2\right)\left[\left(a^2+b^2\right)+\left(c^2+d^2\right)\right]\ge\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)
\(\left(a+c\right)^2+\left(b+d\right)^2\ge\left[\left(a+c\right)+\left(b+d\right)\right]^2\)
Mà : \(\left(1^2+1^2\right)\left[\left(a^2+b^2\right)+\left(c^2+d^2\right)\right]\ge\left[\left(a+b\right)+\left(c+d\right)\right]^2\)
\(\Rightarrow\) đpcm
áp dụng bất đẳng thức mincopxki ta có đpcm
Bình phương lên rồi chuyển vế tương đương nhé bạn! Tên gọi của bất đẳng thức này là Mincopxki
T sẽ giải rõ ràng.
Bình phương 2 vế ta có:
\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\left(1\right)\)
+ Nếu \(ac+bd< 0\Rightarrow\) (1) đúng.
+ Nếu \(ac+bd>0\)
\(\Rightarrow\)(1) \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng)
Vậy BĐT đúng (đpcm)