\(VT=\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\)
Vậy \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\)
\(VT:\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\left(đpcm\right)\)
Ta có: \(VT=\left(x+y\right)^2-y^2\)
\(=\left(x+y-y\right)\left(x+y+y\right)\)
\(=x\left(x+2y\right)=VP\)
\(\Rightarrowđpcm\)
Ta có:
(x + y)2 - y2
= (x + y - y)(x + y + y)
= x(x + 2y) (đpcm)
Vậy (x + y)2 - y2 = x(x + 2y)