Giả sử phân số \(\dfrac{2n+4}{n^2+4n+3}\) chưa tối giản
\(\Rightarrow2n+1;n^2+4n+3\) có ước chung là số nguyên tố
Gọi số nguyên tố d là \(ƯC\left(2n+4;n^2+4n+3\right)\) \(\)(\(d\in N\)*)
\(\Rightarrow\left\{{}\begin{matrix}2n+4⋮d\\n^2+4n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n^2+4n⋮d\\2n^2+8n+6⋮d\end{matrix}\right.\)
\(\Rightarrow4n+6⋮d\)
Mà \(2n+4⋮d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow2⋮d\)
Vì \(d\in N\)*; \(2⋮d\Rightarrow d=1;2\)
Đến đây thì bó tay ồi!!
Vì thức tế phân số này ko thể nào tối giản với mọi số nguyên n được!!