Chứng minh đẳng thức:
1 ,\(tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)+cot\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)=\dfrac{2}{cosx}\)
2 ,\(sin^8x-cos^8x=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)\)
3 ,\(3-4cos2x+cos4x=8sin^4x\)
4 ,\(sin\left(2x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)-cos\left(2x+\dfrac{\pi}{3}\right).cos\left(\dfrac{2\pi}{3}-x\right)=cosx\)
5 ,\(\sqrt{3}cos2x+sin2x+sin\left(4x-\dfrac{\pi}{3}\right)=4cos\left(2x-\dfrac{\pi}{6}\right).sin^2\left(x+\dfrac{\pi}{6}\right)\)
Bài toán :
Cho góc a thỏa mãn tan(a) = \(\dfrac{-4}{3}\) và a thuộc khoảng \(\left(\dfrac{3}{2}\pi;2\pi\right)\) .
Tính P = \(tan\left(\dfrac{\alpha}{2}\right)+cos\left(\dfrac{\alpha}{2}\right)\)
Mình muốn giải cái này bằng cách sử dụng máy tính :3 .
Mình đã làm và ra đáp án nhưng nó bị sai dấu ấy ạ ! Mong các cao nhân có thể tìm ra lỗi sai cho mình :(( huhu
Đây là cách làm của mình :
1. Mình tìm góc a bằng cách bấm : shift tan(\(\dfrac{-4}{3}\)) tính được a
2. Ở góc phần tư thứ IV , nhận thấy tan âm , sin âm , cos dương . Mình xét tính sin(a/2) và cos(a/2) đều thỏa mãn về dấu và mình chỉ việc tính toán mà không cần loại điều kiện nữa )
\(sin\left(\dfrac{ans}{2}\right)+cos\left(\dfrac{ans}{2}\right)=\dfrac{\sqrt{5}}{5}\)
Khi check đáp án thì nó lại là âm ạ ! Mọi người cho em ít kinh nghiệm ạ !
Cảm ơn mọi người và chúc mọi người năm mới vui vẻ !
\(\tan\left(\dfrac{\pi}{4}-a\right)=\dfrac{1-\tan a}{1+\tan a}\)chứng minh
Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc \(\alpha,\beta\) :
a) \(\sin6\alpha\cot3\alpha-\cos6\alpha\)
b) \(\left[\tan\left(90^0-\alpha\right)-\cot\left(90^0+\alpha\right)\right]^2-\left[\cot\left(180^0+\alpha\right)+\cot\left(270^0+\alpha\right)\right]^2\)
c) \(\left(\tan\alpha-\tan\beta\right)\cot\left(\alpha-\beta\right)-\tan\alpha\tan\beta\)
d) \(\left(\cot\dfrac{\alpha}{3}-\tan\dfrac{\alpha}{3}\right)\tan\dfrac{2\alpha}{3}\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
1, \(A=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
2, \(B=cos^6x+2sin^4x.cos^2x+3sin^2x.cos^4x+sin^4x\)
3, \(C=cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
4, \(D=cos^2x+cos^2\left(x+\dfrac{2\pi}{3}\right)+cos^2\left(\dfrac{2\pi}{3}-x\right)\)
5, \(E=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)-\left(sin^8x+cos^8x\right)\)
6, \(F=cos\left(\pi-x\right)+sin\left(\dfrac{-3\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\dfrac{3\pi}{2}-x\right)\)
Tính :
a) \(\cos225^0;\sin240^0;\cot\left(-15^0\right);\tan75^0\)
b) \(\sin\dfrac{7\pi}{15};\cos\left(-\dfrac{\pi}{12}\right);\tan\dfrac{13\pi}{12}\)
Chứng Minh
\(tan^2a+cot^2a=\dfrac{2\left(3+cos4a\right)}{1-cos4a}\)
Rút gọn cac biểu thức sau:
\(A=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(B=sin\left(x+\dfrac{85\pi}{2}\right)+cos\left(2017\pi+x\right)+sin^2\left(33\pi+x\right)+sin^2\left(x-\dfrac{5\pi}{2}\right)+cos\left(x+\dfrac{3\pi}{2}\right)\)\(C=sin\left(x+\dfrac{2017\pi}{2}\right)+2sin^2\left(x-\pi\right)+cos\left(x+2019\pi\right)+cos2x+sin\left(x+\dfrac{9\pi}{2}\right)\)
Chứng minh:
1.\(\dfrac{\cot^2x-\sin^2x}{\cot^2x-\tan^2x}=\sin^2x\cdot\cos^2x\)
2.\(\dfrac{1-\sin x}{\cos x}-\dfrac{\cos x}{1+\sin x}=0\)
3.\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cot x}=\cos x\)
4.\(\dfrac{\tan x}{1-\tan^2x}\cdot\dfrac{\cot^2x-1}{\cot x}=1\)
5.\(\dfrac{1+\sin^2x}{1-\sin^2x}=1+2\tan^2x\)