\(\sqrt{\left(a+1\right)\left(b-1\right)}\le\frac{a+1+b-1}{2}=\frac{a+b}{2}\)
Tương tự: \(\sqrt{\left(b+1\right)\left(c-1\right)}\le\frac{b+c}{2}\) ; \(\sqrt{\left(c+1\right)\left(a-1\right)}\le\frac{c+a}{2}\)
Cộng vế với vế, do dấu "=" ko đồng thời xảy ra nên:
\(\sqrt{\left(a+1\right)\left(b-1\right)}+\sqrt{\left(b+1\right)\left(c-1\right)}+\sqrt{\left(c+1\right)\left(a-1\right)}< a+b+c\)