\(VP=\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5+4\sqrt{5}+4}\)
\(=\sqrt{\sqrt{5}^2+2\sqrt{5}.2+2^2}\)
\(=\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\sqrt{5}+2=VT\)
\(VP=\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5+4\sqrt{5}+4}\)
\(=\sqrt{\sqrt{5}^2+2\sqrt{5}.2+2^2}\)
\(=\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\sqrt{5}+2=VT\)
C8: chứng minh
a,\(\sqrt{4-2\sqrt{3}}\)-\(\sqrt{3}\)= -1
b, 9+ \(4\sqrt{5}\)= (\(\sqrt{5}\)+2)\(^2\)
c, \(\sqrt{9+4\sqrt{5}}-\sqrt{5}\) =2
d,\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
Bài 1:Chứng minh các đẳng thức:
a) \(\sqrt{5}+\sqrt{3}=\sqrt{8+2\sqrt{3}}\)
b)\(\sqrt{5}+2=\sqrt{9+4\sqrt{5}}\)
Chứng minh rằng:
a)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\) là số nguyên
b)\(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Chứng minh rằng:
a> \(\sqrt{\left(a+c\right)\left(b+d\right)}\ge\sqrt{ab}+\sqrt{cd}\) với a,b,c,d >0
b> \(\dfrac{x^2+5}{\sqrt{x^2+4}}>2\)
a)cho a>b>0 chứng minh rằng : \(\dfrac{1}{a+b}\le\dfrac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\dfrac{\sqrt{2}-\sqrt{1}}{3}+\dfrac{\sqrt{3}-\sqrt{2}}{5}+\dfrac{\sqrt{4}-\sqrt{3}}{7}+...+\dfrac{\sqrt{2011}-\sqrt{2010}}{4021}< \dfrac{1}{2}\)
giúp mk vs
chứng minh bất đẳng thức:
\(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{9}+\sqrt{11}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)<\(\dfrac{9}{4}\)
a)cho a>b>0 chứng minh rằng :
Câu 1: Rút gọn biểu thức
a) \(N=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b) \(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Câu 2:
a) Cho a > 0. Chứng minh: \(a+\dfrac{1}{a}\ge2\)
b) Cho \(a\ge0\) , \(b\ge0\) . Chứng minh: \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
c) Cho a, b > 0. Chứng minh: \(\sqrt{a}+\sqrt{b}\le\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
d) Chứng minh: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
cho M= \(\sqrt{4+\sqrt{7}}-\sqrt{\sqrt{7}+\sqrt{3}}\) chứng minh M=\(\sqrt{2}\)
cho M=\(\dfrac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}\) chứng minh M=-\(\sqrt{2}\)
CHO M=\(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}\)+\(\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\) chứng minh M=\(\sqrt{6}\)
giúp mk vs mk cần gấp lắm