Chứng minh các bất đẳng thức sau:
\(\frac{\sqrt{\sqrt{2}+\sqrt{2}}+\sqrt{3}\sqrt{2-\sqrt{2}}}{4}< 0,8\)
(\(\sqrt{\sqrt{3}}+\sqrt{\sqrt{5}}+\sqrt{\sqrt{7}}\))-(\(\sqrt{3}+\sqrt{5}+\sqrt{7}\)) < 3
\(\sqrt{\sqrt{17+12\sqrt{2}}-\sqrt{2}}>\sqrt{3}-1\)
chứng minh bất đẳng thức:
\(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{9}+\sqrt{11}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)<\(\dfrac{9}{4}\)
. Chứng minh đẳng thức
a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}=\sqrt{2}-1\) b) \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}=1\)
C8: chứng minh
a,\(\sqrt{4-2\sqrt{3}}\)-\(\sqrt{3}\)= -1
b, 9+ \(4\sqrt{5}\)= (\(\sqrt{5}\)+2)\(^2\)
c, \(\sqrt{9+4\sqrt{5}}-\sqrt{5}\) =2
d,\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
Chứng minh đẳng thức sau:
\(\dfrac{1}{1+\sqrt{2}}\)+\(\dfrac{1}{\sqrt{2}+\sqrt{3}}\)+...+\(\dfrac{1}{\sqrt{99}+\sqrt{100}}\)=9
rÚT GỌN: G=\(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{6}}-\sqrt{2}\)
chững minh : a) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt[]{6}=9\)
b)\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
c)\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
giúp mk với tối mai mk nạp rồi
Câu 1: Rút gọn biểu thức
a) \(N=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b) \(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Câu 2:
a) Cho a > 0. Chứng minh: \(a+\dfrac{1}{a}\ge2\)
b) Cho \(a\ge0\) , \(b\ge0\) . Chứng minh: \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
c) Cho a, b > 0. Chứng minh: \(\sqrt{a}+\sqrt{b}\le\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
d) Chứng minh: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
Rút gọn biểu thức:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}\)
\(B=\left(\frac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\frac{4}{1+\sqrt{5}}+4\right)\)
\(C=\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right):\left(1:\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(D=2\sqrt{50}-\frac{1}{\sqrt{2}-1}+4\sqrt{\frac{9}{2}}-\sqrt{3-2\sqrt{2}}\)
Thực hiện phép tính:
a) \(\sqrt{24+8\sqrt{5}}-\sqrt{9-4\sqrt{5}}.\)
b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\).
c) \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+....+\dfrac{1}{\sqrt{99}+\sqrt{100}}.\)