Chứng minh rằng : \(sin\left(a+b\right).cosb-sin\left(a+c\right).cosc=sin\left(b-c\right).cos\left(a+b+c\right)\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
Chứng minh rằng:
\(\dfrac{1+cos\left(a\right)-sin\left(a\right)}{1-cos\left(a\right)-sin\left(a\right)}=-cot\left(\dfrac{a}{2}\right)\)
Rút gọn các biểu thức sau:
a, \(A=\sin^2\left(a-b\right)+\sin^2b+2\sin\left(a-b\right).\sin b.\cos a\)
b, \(B=\cos^2a+\cos^2\left(a+b\right)-2\cos a.\cos b.\cos\left(a+b\right)\)
Mọi người giúp mình với ạ!!!
chứng minh các đẳng thức sau
a) \(\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\frac{1}{4}\cos3x\)
b) \(\sin5x-2\sin x\left(\cos4x+\cos2x\right)=\sin x\)
Chứng minh rằng:
\(\dfrac{sin\left(x\right)+sin\left(\dfrac{x}{2}\right)}{1+cos\left(x\right)+cos\left(\dfrac{x}{2}\right)}=tan\left(\dfrac{x}{2}\right)\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Cho \(\alpha-\beta=\frac{\pi}{3}\). Tính giá trị bthuc
a) \(A=\left(cos\alpha+cos\beta\right)^2+\left(sin\alpha+sin\beta\right)^2\)
b) \(B=\left(cos\alpha+sin\beta\right)^2+\left(cos\beta-sin\alpha\right)^2\)