Lời giải:
\(\sin (a+b)=\sin (a+b+c-c)=\sin (a+b+c).\cos c-\cos (a+b+c)\sin c\)
\(\sin (a+c)=\sin (a+c+b-b)=\sin (a+b+c)\cos b-\cos (a+b+c)\sin b\)
Do đó:
\(\text{VT}=\sin (a+b+c)\cos b\cos c-\cos (a+b+c)\sin c\cos b-\sin (a+b+c)\cos b\cos c+\cos (a+b+c)\sin b\cos c\)
\(=\sin (a+b+c)(\cos b\cos c-\cos b\cos c)+\cos (a+b+c)(\sin b\cos c-\sin c\cos b)\)
\(=\cos (a+b+c)(\sin b\cos c-\cos b\sin c)=\cos (a+b+c)\sin (b-c)\)
\(=\text{VP}\)
Ta có đpcm.