A=a^3+b^3+c^3
=(a+b+c)^3-3(a+b)(b+c)(a+c)
Vì a+b+c chia hết cho 6
và 3(a+b)(b+c)(a+c) luôn chia hết cho 6
nên A chia hết cho 6
A=a^3+b^3+c^3
=(a+b+c)^3-3(a+b)(b+c)(a+c)
Vì a+b+c chia hết cho 6
và 3(a+b)(b+c)(a+c) luôn chia hết cho 6
nên A chia hết cho 6
Chứng minh rằng a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6
cho a,b,c dương thỏa a+b+c=3 chứng minh rằng
\(\dfrac{a}{b^3+16}+\dfrac{b}{c^3+16}+\dfrac{c}{a^3+16}\ge\dfrac{1}{6}\)
Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^6}{b^3\left(c+a\right)}+\frac{b^6}{c^3\left(a+b\right)}+\frac{c^6}{a^3\left(b+c\right)}\ge\frac{ab+bc+ca}{2}\)
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
Cho a+b+c=6. Chứng minh rằng nếu c≥a; c≥b thì c≥a+b
Bài 1: Cho a > 0, b > 0. Chứng minh rằng:
a/√b + b/√a >= √a + √b
Bài 2: Cho a, b, c là các đô dài của các cạnh tam giác và p là nửa chu vi. Chứng minh rằng:
(p - a)(p - b) <= c^2/4
Bài 3:Chứng minh rằng với mọi số thực a ta có:3(a^4+a^2+1)>=(a^2+a+1)^2
Bài 4:Cho 3 số thực dương a,b,c.chứng minh rằng:(1+a/b)(1+b/c)(1+c/a)>=8
Bài 5:Cho a,b là hai số dương. Chứng minh:a^2+b^2+1/a++1/b>=2(√a+√b)
Bài 6:Cho ba số dương a,b,c. Chứng minh rằng:ab/(a+b)+bc/(b+c)+ca/(c+a)<=(a+b+c)/2
Bài 7:Cho ba số thực dương a,b,c thỏa mãn:ab+bc+ca=3. Chứng minh rằng:
a^3/(b^2+3)+b^3/(c^2+3)+c^3/(a^2+3)>=3/4
bài 8:Tìm giá trị nhỏ nhất của hàm số f(x)=x+3/(x-2) với x>2
Câu 1: Chứng minh rằng m3n-mn3\(\vdots\) 6 (m,n ∈ Z)
Câu 2: Cho a và b là 2 số lẻ và không chia hết cho 3. Chứng minh rằng a2-b2 \(\vdots\) 24 (n ∈ N)
Câu 3: Chứng minh rằng \(2^{3^{4n+1}}+3\) \(\vdots\) 11 (n ∈ N)
Cho 2n = 10a +b
Chứng minh rằng nếu n > 3 thì tích a.b chia hết cho 6 với a,b,c là số nguyên dương và b < 10
Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:
\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)
Bài 2: Chứng minh rằng với mọi số thực x,y ta có:
\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)
Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:
\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)
Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)
Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)
Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)
Bài 7: Chứng minh rằng với mọi số thực a,b ta có:
\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)
Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:
\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)
Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:
\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)
Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:
\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)
Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:
\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)
@Akai Haruma