Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thành Trương

Bài 1: Cho a > 0, b > 0. Chứng minh rằng:
a/√b + b/√a >= √a + √b
Bài 2: Cho a, b, c là các đô dài của các cạnh tam giác và p là nửa chu vi. Chứng minh rằng:
(p - a)(p - b) <= c^2/4
Bài 3:Chứng minh rằng với mọi số thực a ta có:3(a^4+a^2+1)>=(a^2+a+1)^2
Bài 4:Cho 3 số thực dương a,b,c.chứng minh rằng:(1+a/b)(1+b/c)(1+c/a)>=8
Bài 5:Cho a,b là hai số dương. Chứng minh:a^2+b^2+1/a++1/b>=2(√a+√b)
Bài 6:Cho ba số dương a,b,c. Chứng minh rằng:ab/(a+b)+bc/(b+c)+ca/(c+a)<=(a+b+c)/2
Bài 7:Cho ba số thực dương a,b,c thỏa mãn:ab+bc+ca=3. Chứng minh rằng:
a^3/(b^2+3)+b^3/(c^2+3)+c^3/(a^2+3)>=3/4
bài 8:Tìm giá trị nhỏ nhất của hàm số f(x)=x+3/(x-2) với x>2

Phùng Khánh Linh
9 tháng 6 2018 lúc 11:43

Bài 6 . Áp dụng BĐT Cauchy , ta có :

a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

⇔ ( a + b)2 ≥ 4ab

\(\dfrac{\left(a+b\right)^2}{4}\)≥ ab

\(\dfrac{a+b}{4}\)\(\dfrac{ab}{a+b}\) ( 1 )

CMTT , ta cũng được : \(\dfrac{b+c}{4}\)\(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\)\(\dfrac{ac}{a+c}\)( 3)

Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :

\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

\(\dfrac{a+b+c}{2}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

Phùng Khánh Linh
9 tháng 6 2018 lúc 13:13

Bài 4.

Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :

\(1+\dfrac{a}{b}\)\(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)

\(1+\dfrac{b}{c}\)\(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)

\(1+\dfrac{c}{a}\)\(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)

Nhân từng vế của ( 1 ; 2 ; 3) , ta được :

\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)\(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)

Thành Trương
8 tháng 6 2018 lúc 12:20

@Giáo Viên Hoc24.vn

@Akai Haruma

Phùng Khánh Linh
9 tháng 6 2018 lúc 11:28

Bài 1.

Ta có : \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}=\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}=\dfrac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}=\left(\sqrt{a}+\sqrt{b}\right)\left(\dfrac{a+b-\sqrt{ab}}{\sqrt{ab}}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\dfrac{a+b}{\sqrt{ab}}-1\right)\)Áp dụng BĐT Cauchy cho các số dương a,b , ta có :

a + b ≥ \(2\sqrt{ab}\)

\(\dfrac{a+b}{\sqrt{ab}}\) ≥ 2

\(\dfrac{a+b}{\sqrt{ab}}-1\) ≥ 1

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\dfrac{a+b}{\sqrt{ab}}-1\right)\)\(\sqrt{a}+\sqrt{b}\)

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)\(\sqrt{a}+\sqrt{b}\)


Các câu hỏi tương tự
Thành Trương
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Thành Trương
Xem chi tiết
Văn Quyết
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Thành Trương
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
🍀Cố lên!!🍀
Xem chi tiết
khoimzx
Xem chi tiết