Bài toán 4: Chứng minh rằng nếu p và 8p2 + 1 là hai số nguyên tố thì 8p2 - 1 là số nguyên tố.
Giải: Giả sử p là số nguyên tố lớn hơn 3 thế thì p có dạng 3k \(\pm\) 1 (k \(\in\) N)
=> p2 = (3k + 1)2 = 3(3k2 \(\pm\) 2k) + 1 = 3t + 1
=> 8p2 +1 = 8( 3t + 1) + 1 = 24t + 9 \(⋮\)3 => 8p2 + 1 là hợp số (trái giả thiết)
Vậy p = 3k, p nguyên tố => p = 3
8p2 + 1 = 8.32 + 1 = 73 ( nguyên tố)
8p2 – 1 = 8.32 – 1 = 71 ( nguyên tố)
Vậy p và 8p2 + 1 là hai số nguyên tố thì 8p2 - 1 là số nguyên tố.
Nguồn: Google