Áp dụng bđt AM - GM, ta có:
\(4\sqrt{3}S=4\sqrt{3}\times\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(=4\sqrt{3}\times\dfrac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{4}\)
\(\le\sqrt{3\left(a+b+c\right)}\times\sqrt{\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}}\)
\(=\dfrac{\left(a+b+c\right)^2}{3}\)
\(=\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{3}\)
\(=\dfrac{3\left(a^2+b^2+c^2\right)-\left(a^2-2ab+b^2\right)-\left(a^2-2ac+c^2\right)-\left(b^2-2bc+c^2\right)}{3}\)
\(=a^2+b^2+c^2-\dfrac{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}{3}\)
Dấu "=" xảy ra khi a = b = c (\(\Delta ABC\) đều)
Làm linh tinh đấy -.- hổng chắc đâu Ọ v Ọ
Còn một cách rất pá đạo nữa , không hiểu nổi lấy ý tưởng từ đâu luôn:
CM:\(a^2+b^2+c^2\ge4\sqrt{3}S\)
\(\Leftrightarrow a^2+b^2+c^2-4\sqrt{3}S\ge0\)
\(\Leftrightarrow a^2+b^2+a^2+b^2-2ab.\cos C-4\sqrt{3}.\dfrac{1}{2}.ab.\sin C\ge0\)( định lý cos + CT diện tích)
\(\Leftrightarrow2\left(a^2+b^2-2ab\right)+4ab-4ab.\dfrac{1}{2}.\cos C-4ab.\dfrac{\sqrt{3}}{2}.\sin C\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2+4ab\left(1-\cos\dfrac{\pi}{3}.\cos C-\sin\dfrac{\pi}{3}.\sin C\right)\ge0\)
( \(\cos\dfrac{\pi}{3}=\cos60=\dfrac{1}{2}\);\(\sin\dfrac{\pi}{3}=\sin60=\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow2\left(a-b\right)^2+4ab\left[1-\cos\left(\dfrac{\pi}{3}-C\right)\right]\ge0\)( luôn đúng vì \(-1\le\cos\alpha\le1\))
( \(\cos\left(x-y\right)=\cos x\cos y+\sin x\sin y\))