\(P=a^3+b^3=\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)\ge\left(a+b\right)\left[\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2\right]\)
\(P\ge\frac{1}{4}\left(a+b\right)\left(a+b\right)^2=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)