Cho các số dương a,b,c thỏa mãn điều kiện a+b+c=6. Chứng minh rằng:
\(\frac{ab}{6+a-c}+\frac{bc}{6+b-a}+\frac{ca}{6+c-b}\le2\)
Với a, b, c là các số dương thỏa mãn điều kiện:
a+b+c+ab+bc+ca = 6abc
Chứng minh: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)≥3
Cho a, b, c >0 và a + b + c ≤ 3 . Chứng minh rằng :
\(\frac{4}{a^2+b^2+c^2}+\frac{2021}{ab++bc+ca}\) ≥ 675
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
Cho ΔABC(BC=a; AC=b; AB=c), chứng minh \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{1}{2Rr}\)
Chứng minh rằng:
Với a+b+c=0 thì a^4+b^4+c^4=2(ab+bc+ca)^2
Cho các số thực a,b,c thỏa mãn điều kiện \(\left\{{}\begin{matrix}a+b+c>0\\ab+bc+ca>0\\abc>0\end{matrix}\right.\). Hãy chứng minh: a,b,c>0
Cho a,b,c là các số thực dương thỏa mãn ab+bc+ca=3
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)