\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n+1+1\right)\left(n^2+3n+1-1\right)\)
\(=\left(n^2+3n+2\right)\left(n^2+3n\right)\)
\(=\left(n+1\right)\left(n+2\right)n\left(n+3\right)\) (tích 4 số tự nhiên liên tiếp chia hết cho 24)
(n2+3n+1)2-1=(n2+3n+1-1).(n2+3n+1+1)
=(n2+3n).(n2+3n+2)=n(n+3)(n2+n+2n+2)
= n(n+3)(n+1)(n+2)
Vi 4 so tu nhien lien ⋮24 => n(n+1)(n+2)(n+3)⋮24 => dpcm