Cho tam giác ABC, Tìm tập hợp diểm M sao cho:
a) \(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho hai điểm A và B. Điểm M thỏa mãn điều kiện \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
Chứng minh rằng \(OM=\dfrac{1}{2}AB\), trong đó O là trung điểm của AB ?
Cho hình chữ nhật ABCD. Gọi I là giao điểm của hai đường chéo AC và BD.
a) Với điểm M tùy ý , hãy chứng minh :
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
b) Chứng minh rằng :
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)
Cho \(\overrightarrow{a}=\left(2;1\right);\overrightarrow{b}=\left(3;-4\right);\overrightarrow{c=}\left(-7;2\right)\)
a) Tìm tọa độ của vectơ \(\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}\)
b) Tìm tọa độ vectơ \(\overrightarrow{x}\) sao cho : \(\overrightarrow{x}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\)
c) Tìm các số k và h sao cho : \(\overrightarrow{c}=k\overrightarrow{a}+h\overrightarrow{b}\)
Cho \(\overrightarrow{a}=\left(2;1\right);\overrightarrow{b}=\left(3;-4\right);\overrightarrow{c}=\left(-7;2\right)\)
a) Tìm tọa độ của vectơ \(\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}\)
b) Tìm tọa độ của vectơ \(\overrightarrow{x}\) sao cho \(\overrightarrow{x}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\)
c) Tìm các số k và h sao cho \(\overrightarrow{c}=k\overrightarrow{a}+h\overrightarrow{b}\)
Cho \(\overrightarrow{a}=\left(2;-2\right);\overrightarrow{b}=\left(1;4\right)\)
a) Tính tọa độ các vectơ \(\overrightarrow{a}+\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\) và \(2\overrightarrow{a}+3\overrightarrow{b}\)
b) Hãy phân tích vectơ \(\overrightarrow{c}=\left(5;0\right)\) theo hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\)
Cho 4 điểm A, B, C, D; I, F lần lượt là trung điểm BC, CD. Chứng minh: \(2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA}\right)=3\overrightarrow{DB}\)
Trong mặt phẳng tọa độ Oxy, cho hai vectơ \(\overrightarrow{u}=\left(3;-4\right);\overrightarrow{v}=\left(2;5\right)\)
a) Tìm tọa độ của vectơ \(\overrightarrow{a}=2\overrightarrow{u}+3\overrightarrow{v}\)
b) Tìm tọa độ của vectơ \(\overrightarrow{b}=\overrightarrow{u}-\overrightarrow{v}\)
c) Tìm m sao cho \(\overrightarrow{c}=\left(m;10\right)\) và \(\overrightarrow{v}\) cùng phương
Cho tam giác đều ABC có cạnh bằng a. Tính :
a) \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\)
b) \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)