Ôn tập chương I

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hình chữ nhật ABCD. Gọi I là giao điểm của hai đường chéo AC và BD.

a) Với điểm M tùy ý , hãy chứng minh :

                    \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)

b) Chứng minh rằng :

                    \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

Bùi Thị Vân
18 tháng 5 2017 lúc 8:51

a)
Giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MB}-\overrightarrow{MD}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+\left(\overrightarrow{MC}-\overrightarrow{MD}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (\(\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) do tứ giác ABCD là hình chữ nhật).
Vậy điều giả sử đúng. Ta có điều phải chứng minh.

Bùi Thị Vân
18 tháng 5 2017 lúc 8:56

b) Theo quy tắc hình bình hành:
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\).
Áp dụng quy tắc 3 điểm:
\(\left|\overrightarrow{AB}-\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{DA}\right|=\left|\overrightarrow{DB}\right|=DB\).
Do tứ giác ABCD là hình chữ nhật nên AC = BD.
Vì vậy: \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\).


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Khoẻ Nguyển Minh
Xem chi tiết
Khánh Huyền
Xem chi tiết
Quỳnh Như
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết