Do vế phải lẻ nên vế trái lẻ
- TH1: Cả 3 số đều lẻ, đặt \(\left(x;y;z\right)=\left(2k+1;2m+1;2n+1\right)\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2k+1\right)^2=2023\)
\(\Leftrightarrow m\left(m+1\right)+n\left(n+1\right)+k\left(k+1\right)=505\)
Mà \(m\left(m+1\right);n\left(n+1\right);k\left(k+1\right)\) đều là tích 2 số nguyên liên tiếp \(\Rightarrow\) vế trái chẵn, trong khi vế phải lẻ \(\Rightarrow\) pt vô nghiệm
- TH2: 2 số chẵn 1 số lẻ, do vai trò 3 số là như nhau nên giả sử x;y chẵn và z lẻ, đặt \(\left(x;y;z\right)=\left(2k;2m;2n+1\right)\)
\(4k^2+4m^2+\left(2n+1\right)^2=2023\)
\(\Leftrightarrow4\left(k^2+m^2+n^2+n\right)=2022\)
Vế trái chia hết cho 4, vế phải ko chia hết cho 4 nên pt vô nghiệm
Vậy ko tồn tại x;y;z nguyên thỏa mãn