Bài 5b: Tiếp tuyến của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Trần Quốc Bảo

Chứng  minh rằng họ đường cong \(\left(C_m\right):y=\frac{\left(3m+1\right)x-m^2+m}{x+m}\) luôn tiếp xúc với hai đường thẳng cố định.

Nguyễn Thái Bình
29 tháng 4 2016 lúc 9:34

Giả sử \(\left(C_m\right)\) luôn tiếp xúc với đường thẳng \(y=ax+b\), khi đó phương trình sau có nghiệm với mọi m :

    \(\begin{cases}\frac{\left(3m+1\right)x+m-m^2}{x+m}=ax+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)   \(\Leftrightarrow\begin{cases}3m+1-\frac{4m^2}{x+m}=a\left(x+m\right)am+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)

\(\Leftrightarrow\begin{cases}\frac{8m^2}{x+m}=am+3m+1-b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\frac{\left(am+3m+1-b\right)^2}{16m^2}=a\) với mọi m

\(\Leftrightarrow\left(a^2-10a+9\right)m^2+2\left(a+3\right)\left(1-b\right)m+\left(1-b\right)^2=0\) với mọi m

\(\Leftrightarrow\begin{cases}a^2-10a+9=0\\\left(a+3\right)\left(1-b\right)=0\\\left(1-b\right)^2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}a=1;a=9\\b=1\end{cases}\)

Vậy \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng \(y=x+1;y=9x+1\)

 


Các câu hỏi tương tự
Lê An Bình
Xem chi tiết
Trương Hoàng Minh
Xem chi tiết
Nguyễn Thành Nguyên
Xem chi tiết
Nguyễn Huỳnh Đông Anh
Xem chi tiết
Nguyễn Quốc Hải
Xem chi tiết
Hồ Anh Thư
Xem chi tiết
Phạm Thị Phương Thanh
Xem chi tiết
Trần Thị Quỳnh Vy
Xem chi tiết
Nguyễn Hoài Nhân
Xem chi tiết