Chứng minh rằng :
\(\dfrac{7}{12}< \dfrac{1}{21}+\dfrac{1}{20}+...+\dfrac{1}{40}< \dfrac{5}{6}\)
( Chú ý : \(\dfrac{1}{21}+\dfrac{1}{20}\)chứ k phải \(\dfrac{1}{21}+\dfrac{1}{22}\) nha )
Cho \(A=\dfrac{11}{9}+\dfrac{18}{16}+................+\dfrac{1766}{1764}\)Chứng minh rằng \(40\dfrac{23}{43}< A< 40\dfrac{20}{21}\)
Help me!!!!!!!!!!!
1)
Cho \(\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{200}\)
Chứng minh: \(A>\dfrac{9}{10}\)
2)
Cho \(B=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Chứng minh: \(B>\dfrac{7}{12}\)
HELP ME!!!!!!!!
Không dùng máy tính bỏ túi hãy chứng minh S >1
S = \(\dfrac{5}{20}\)+\(\dfrac{5}{21}\)+\(\dfrac{5}{22}\)+\(\dfrac{5}{23}\)+\(\dfrac{5}{24}\)
Bài 1: Chứng tỏ rằng :
\(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{60}< \dfrac{3}{2}\)
Bài 2: Chứng tỏ rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{n^2}< 1\)
\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}< \dfrac{1}{2}\)
Tính tổng sau
B=\(\dfrac{5}{2\cdot1}+\dfrac{4}{1\cdot11}+\dfrac{3}{11\cdot2}+\dfrac{1}{2\cdot15}+\dfrac{13}{15\cdot4}\)
Chứng tỏ rằng
D=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)
HELP ME
Tìm x :
a. \(x-\dfrac{20}{11.13}-\dfrac{20}{13.15}-\dfrac{20}{15.17}-....-\dfrac{20}{53.55}\)
b. \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
Chứng minh \(⋮\) 31
cho tổng B=\(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{22}\). Chứng minh rằng: B > \(\dfrac{1}{2}\)
Chứng minh rằng với mọi số tự nhiên khác 0 ta đều có :
a) \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right).\left(3n+2\right)}=\dfrac{n}{6n+4}\)
b) \(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+...+\dfrac{5}{\left(4n-1\right).\left(4n+3\right)}=\dfrac{5n}{4n+3}\)
giúp mk với